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Correction to the Fukuda-Kawata Young's 
modulus theory and the Fukuda-Chou strength 
theory for short fibre-reinforced composite 
materials 
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The theories for modulus and strength of short fibre-reinforced composite materials are 
based on the calculation of the force sustained by fibres crossing an arbitrary line 
perpendicular to the applied load, called the scan line, in a thin, rectangular specimen. The 
widely referenced Fukuda-Kawata modulus theory and the Fukuda-Chou strength theory 
are based on an apparently incorrect procedure for the calculation of the force sustained by 
the fibres crossing the scan line. The error is explained in detail by comparing the 
Fukuda-Kawata modulus theory and the Cox modulus theory. The magnitude of this error is 
calculated for specific cases. 

1. Introduction 
The pioneering research of Cox [1] on the elasticity 
and strength of paper and other fibrous materials 
serves as the foundation of two slightly divergent 
fields: paper physics and mechanics of fibre-reinforced 
composite materials. Cox [1] intended his original 
contribution to be applicable to materials that derive 
their stiffness and strength from thin fibres. Re- 
searchers in the fields of paper [2-63 and composite 
materials [7, 8] have used the ideas of Cox [13 as basic 
building blocks to advance improved theories for the 
Young's modulus and strength of these fibrous mater- 
ials. 

Kallmes and Perez [2] developed a network model 
for the Young's modulus and the tensile strength of 
paper in 1966. Kallmes et al. [3-6] expanded the 
original model in 1978 and it is considered to be one of 
the major models for strength in the paper physics 
area today. This model was based on the concept of an 
ideal sheet of paper with variable fibre orientation as 
postulated by Cox [1], together with the behaviour of 
inter-fibre bonds and the definitions of the critical 
events in the sheet: fibre failure and bond failure. The 
fibre length distribution was not considered in this 
model. 

Fukuda and Kawata [7] developed a theory for the 
Young's modulus of short-fibre reinforced composites 
with variable fibre length and orientation in 1974. 
Fukuda and Chou [83 adopted the basic probabilistic 
approach of Fukuda and Kawata I-7] to develop 
a theory for the strength of short-fibre reinforced com- 
posites with variable fibre length and orientation in 
1982. These theories are extensively cited by the com- 
posites research community as these were the first to 

consider fibre length distribution and fibre orientation 
distribution together to derive expressions for the 
Young's modulus and strength of short fibre-rein- 
forced composite materials, The theories were for- 
mulated in terms of fibre length and fibre orientation 
distribution functions and the physical properties of 
the fibre, the matrix and the composite material. The 
final expressions were presented as a modified "rule of 
mixtures". 

The theory of Cox [-1] as well as the improved 
theories are based on one fundamental point: calcu- 
lation of the force sustained by the fibres crossing 
a scan line, i.e. an arbitrary line perpendicular to the 
applied load in a thin, rectangular specimen. Cox [-1], 
Kallmes and Perez [2] and Kallmes et al. [3-6] use 
a simple and straightforward method, referred to as 
the paper physics approach here, to calculate the force 
sustained by the fibres across the scan line. The paper 
physics approach involves: 

(i) calculating the number of fibres in the specimen 
of length L and orientation 0 that cross the scan 
line, 

(ii) finding the axial force developed in a fibre of 
length L and orientation 0, 

(iii) finding the load-direction component of the 
axial force in a fibre of length L and orientation 0, 

(iv) multiplying the number of fibres of length 
L and orientation 0 that cross the scan line by 
the load-direction component of the axial force 
in a fibre of length L and orientation 0, and 

(v) integrating the above quantity over fibre length 
and fibre orientation to find the total force 
sustained by the fibres crossing the scan line. 
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Figure 1 The specimen. 
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Fukuda and Kawata [7] and Fukuda and Chou [8] 
utilize an averaging method, referred to as the com- 
posite mechanics approach here, to calculate the force 
sustained by the fibres across the scan line. The com- 
posite mechanics approach involves: 

(i) calculating the number of fibres in the specimen 
that cross the scan line, 

(ii) finding the axial force developed in a fibre of 
length L and orientation 0, 

(iii) finding the load-direction component of the 
axial force in a fibre of length L and orientation 0, 

(iv) finding the average load-direction component 
of the axial force in all the fibres in the speci: 
men, and 

(v) multiplying the number of fibres that cross the 
scan line by the average load-direction com- 
ponent of the force in all the fibres in the speci- 
men to find the total force sustained by the 
fibres crossing the scan line. 

There appears to be a mistake in the calculation of 
the force sustained by the fibres across the scan line in 
the derivations of Fukuda and Kawata [-7] and 
Fukuda and Chou [8]: the average load-direction 
component of the axial force is found by averaging 
over all the fibres in the specimen rather than aver- 
aging over the fibres that cross the scan line. Although 
these articles [7, 8] have been extensively cited, the 
authors are not aware of any publication dealing with 
this mistake. This mistake will be explained in detail 
by comparing the paper physics approach and the 
composite mechanics approach for the Fukuda- 
Kawata modulus theory with a case study. The paper 
physics approach will be shown to be the correct 
approach. None of the other fundamental assump- 
tions used by Fukuda and Kawata [7] and Fukuda 
and Chou [-8] are contested. 

The present article will consider a simple composite 
specimen subjected to applied strain, similar to the 
one used by Fukuda and Kawata [-7]. The force sus- 
tained by the fibres across the scan line in this speci- 
men will be calculated by the paper physics and com- 
posite mechanics approaches. The fibre orientation 
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and fibre length factors and hence the force sustained 
by the fibres crossing the scan line will be shown to be 
underpredicted by the composite mechanics ap- 
proach. 

The specimen is in the shape of a thin, rectangular 
plate of dimensions a, b and c with the dimension 
c parallel to the X-axis direction as shown in Fig. 1. 
The specimen consists of N straight fibres dispersed in 
and bonded to a matrix resulting in a fibre volume 
fraction Vr. The fibres have a circular cross-section 
with a radius rf. The fibre orientation is defined as the 
angle between the axial direction of the fibre and the 
X-axis direction. A single fibre of length L and orienta- 
tion 0 is shown in Fig. t. The statistical variation in 
the length and orientation of the fibres are defined by 
independent probability density functions h(L) and 
g(0), respectively. Load, in the form of strain ~o, is 
applied to the specimen in a direction parallel to the 
X-axis direction. 

2. General theory 
The area of cross-section of the fibre is 

A f  = Tcr 2 ( 1 )  

The two-dimensional probability density function of 
the fibre orientation distribution satisfies the following 
condition: 

~/2 

J g(o) dO = 1 (2) 
0 

assuming that the distribution of fibre orientation is 
symmetric with respect to the applied strain along the 
X-axis direction. The probability density function of 
the fibre length distribution satisfies the following 
condition: 

h(L) d L =  1 (3) 
0 

The average fibre length is defined as 

= S Lh (L) dL (4) 
0 



The length of projection on the X-axis of a fibre of 
length L and orientation 0 is 

Lx = L cos 0 (5) 

The volume of the specimen is 

V = abc (6) 

and the volume fraction of the fibres can be defined as 

N A f  L 
V f -  abc (7) 

o r  

Vf abc 
N -  A f ~  (8) 

The average axial stress in a fibre of length L and 
orientation 0 in the specimen is given by Fukuda and 
Kawata [7] as 

Of = (~Ef ~o (cos 2 0 - vs sin 2 0) (9) 

where d? = a dimensionless function of fibre length 
and other fibre, matrix and specimen properties, 
Er = Young's modulus of the fibre, ~o = strain applied 
to the specimen, and Vs = Poisson's ratio of the speci- 
men. 

The average axial force in a fibre of length L and 
orientation 0 is 

F f  = Af Of 

= AfdoEf ~o (cos 2 0 - Vs sin 2 0) (10) 

The average axial force in a fibre of length L and 
orientation 0 projected in the direction of the applied 
strain (X-axis direction) is 

Fx = F f  c o s  0 

= Afd2Ef a0 (cos2 0 - Vs sin2 0)cos 0 (11) 

3. Paper physics approach 
The number of fibres of length between L and 
(L + dL) and orientation between 0 and (0 + dO) is 

gLo = Nh (L) dLg (0)d0 

Vf abc 
= A f L  h(L)dLg(O)dO (12) 

The total length of projection on the X-axis of the 
NL0 fibres Js 

LT = NLO Lx 

Vfabc 

AfL 
h(L)dLg(O) d0L cos 0 (13) 

The number of fibres of length between L and 
(L + d L )  and orientation between 0 and (0 + dO) that 
cross a scan line is 

L T  
Nscan ~ -  

c 

Vf ab 
A f L  

h(L) dL9(0) d0L cos 0 (14) 

The total load that fibres crossing the scan line 
carry is 

ET = Z E N  .... 
L 0 

0 0 [ ~ f  L h(L)dLg(O)dOLc~ 

x [AfOEfao (cos 2 0 - Vs sin 2 0) cos 0] 

Ef r f  ~0 ab ~ ~/2 
= - j ~ qbLh(L)9(O) 

L o o 

(cos 4 0 - Vs sin 2 0 cos 2 0) dO dL (15) 

Since h(L) and 9(0) are independent of each other, the 
integrals can be separated as 

I l F T = Ef  gfE o ab 9(0) (cos 4 0 -- Vs sin20 cos 2 0)d0 
L o  

X [ 1  i ~Lh(L)dL 1 

= E f V f 8  o ab [Cpp]  [-Dpp] (16) 

where Cpp is the fibre orientation factor defined as: 
n/2 

Cpp = ~ g ( 0 ) ( c o s  4 0 - -  v s s in  2 0 c o s  2 0 ) d 0  (17) 
0 

and Dpp is the fibre length factor defined as: 

1 
(pLh(L)dL (18) 

Dpp = ~ 0 

4. Composite mechanics approach 
The average length of projection on the X-axis of the 
fibres in the specimen is 

co rq2 

Lx = 5 S LcosOh(L)dLg(O)dO (19) 
0 0 

Since h(L) and g(0) are independent of each other, 
Equation 19 can be rewritten using Equation 4 as 

=/2 

Lx = L S g(0) cos OdO (20) 
o 

The average number of fibres that cross the scan line 
can be found as 

]~ . . . .  -- NLx  - Vf ab =}2 g(0)cos0 dO (21) 
C Af  o 

~; . . . .  is actually the total number of fibres that cross 
the scan line in the specimen. The average value of the 
X-direction component of the axial force "for all the 
fibres in the specimen" can be found as 

oo ~/2 

fix = ~ ~ [Fx]h(L)dLg(O)dO 
0 0 

oo ~/2 

= 5 5 [ A f ~ ) E f g o  
0 o 

x (cos 2 0 - Vs sin 2 0) cos 0] h(L) dLg (0) dO 
co ~/2 

= A f E f g o  f S ~ h ( L ) 9 ( O )  
o o 

x (cos 3 0 - Vs sin 2 0 cos 0) dO dL (22) 
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The total load that fibres crossing the scan line 
carry is given by Fukuda and Kawata [7] as 

FT = IN . . . .  ] [Fx] (23) 

Thus, the total load is calculated as the product of the 
number of fibres crossing the scan line and the average 
projected axial force in a fibre. But, the average projec- 
ted axial force in a fibre has been computed "for all the 
fibres in the specimen" rather than for those fibres 
which actually cross the scan line. As a result of this, 
the fibres which carry lower loads (shorter fibres or 
fibres aligned closer to the transverse direction) are 
weighted too heavily in the computation of the aver- 
age projected axial force in a fibre, since they are in 
fact less likely to intersect the scan line. This results in 
an underprediction of modulus, since the total stress 
at a given applied strain is underpredicted. The magni- 
tude of the error depends on the  fibre orientation 
distribution, fibre length distribution and the magni- 
tude of the shear lag effect. 

Equation 27 can be written as 

FT [_ Af ~ g(0)cos0d0 A(Efeo 
0 0 0 

x qbh(L)g(0)(cos 3 0 - vs sin 2 0 cos 0)dO dL 1 

re/2 oo re/2 

= E, Vfeo ab 5 g(0)cos0d0 f 5 
0 0 0 

x ~h(L)g(O)(cos 3 0 - vs sin a 0 cos0)d0 dL 

(24) 

Since h(L) and g(0) are independent of each other, the 
integrals can be separated as 

[=12 g/2 
F T = EfVfe 0 ab g(0)cos0d0 ~ g(0) 

LO o 

x (cos 3 0 -- vs sin 2 0 cos 0)d0 4)h(L) dL 

= E f V f g o a b  [CCM ] [DcM ] (25) 

where CCM is the fibre orientation factor defined as: 

re/2 re/2 
CCM = j" g(0)cos0d0 ~ g(0) 

0 0 

x (cos 3 0 -- vs sin 2 0 cos 0) dO (26) 

and DCM is the fibre length factor defined as: 

DCM = ~ qbh(L)dL (27) 
0 

Comparison of Equations 17 and 18 with Equations 
26 and 27 clearly brings out the difference in the paper 
physics and the composite mechanics approaches. 
Some specific cases are considered in the next two 
sections to illustrate the magnitude of this difference. 

5. Fibre orientation factor 
The limiting case of a specimen with very long fibres is 
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Figure 2 Schematic of the probability density function for fibre 
orientation distribution. 

considered in this section; the assumption leads to 

Dvp = DCM = 1 (28) 

The fibre orientation factors resulting from the two 
approaches are now calculated for the following prob- 
ability density function for fibre orientation distribu- 
tion: 

1 
g ( 0 ) = -  in0~<0~< 

0t 

g ( 0 ) = 0  i n 0 > u  (29) 

The function is shown schematically in Fig. 2. The 
fibre orientation factors Cvp and CCM a r e  shown in 
Fig. 3 as a function of ct with the Poisson's ratio of the 
specimen taken as 1/3. The variation in Poisson's ratio 
of the specimen with ~ is ignored for this calculation. 
As can be seen, the calculation procedure outlined 
under the compositemechanics approach consistently 
underpredicts the fibre orientation factor and thus the 
force sustained by the fibres across the scan line. The 
value of Cvv for a random orientation of fibres is 1/3 
which is the same value predicted by Cox [1]. 

6. Fibre length  factor 
The limiting case of a specimen with unidirectional 
orientation of fibres is considered in this section; the 
assumption leads to 

Cpp = CcM = 1 (30) 

Fukuda and Kawata [7] have predicted qb using an 
advanced analysis for the mechanism of load transfer 
between a short fibre and matrix. However, it is 
enough to consider the simple prediction of d~ given by 
Cox [1] for the purpose of this discussion concerning 
a specimen with a unidirectional orientation of fibres. 
Therefore, from Cox [1], 

f tanh ([3L/2)~ 
r = 11 (31) 

r. 1 
13 = LEfA eln (R/ OI = ) 
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I E  Em ~1/2 
= f(1 + Vm) r~ In (R/rf)] (32) 

where Gm= shear modulus of the matrix, R = dis- 
tance from the centre of the fibre under consideration 
to the ring of the nearest neighbours, Em= Young's 
modulus of the matrix, and Vm = Poisson's ratio of the 
matrix. Piggott [-9] has shown that for a hexagonal 
fibre packing arrangement 

= ~ In (33) 

Using Equation 31, in Equations 18 and 27, the fibre 
length factors for this limiting case can be rewritten as 

,{ Dpp = ~ ~ 1 
0 

tanh ([3L/2)~ Lh(L) dL 
(~L/2) j 

tanh ([3L/2)~ h(L) dL 
([3L/2) J 

(34)  

When all the fibres in the specimen are of equal 
length, the two approaches result in the same fibre 
length factors. However, this is not the case for any 
other fibre length distribution function. As an 
example, the fibre length factors resulting from the 
two approaches are calculated for the following prob- 
ability density function for fibre length distribution: 

1 
h(L) = ~ in 0 ~ L ~< X 

h(L) = 0 in L > X (35) 

The function is shown schematically in Fig. 4. An 
E-glass/epoxy composite with a hexagonal fibre pack- 
ing arrangement is considered. The material proper- 
ties for this composite are [-8]: Vf = 0.5, Ef = 72 GPa, 
rf = 5 btm, E m  = 2.5 GPa, Vm = 0.3. The fibre length 
factors Dpp and DcM are shown in Fig. 5 as a function 
of X. As can be seen, the calculation procedure out- 
lined under the composite mechanics approach con- 

h (L) 

1/X 

Figure 4 Schematic of the probability density function for fibre 
length distribution. 

sistently underpredicts the fibre length factor and thus 
the force sustained by the fibres across the scan line. 

7.  C o n c l u s i o n  

The theories for modulus and strength of short fibre- 
reinforced composite materials are based on the caicu- 
lation of the force sustained by fibres crossing the scan 
line. The Cox theory for modulus is based on a simple 
but correct calculation procedure while the Fukuda-  
Kawata modulus theory and the Fukuda -Chou  
strength theory are based on an apparently incorrect 
procedure for the calculation of the force sustained by 
the fibres crossing the scan line. The error becomes 
clear once the fibre orientation factor and the fibre 
length factor for modulus are calculated according to 
the Cox and Fukuda-Kawata  theories. The magni- 
tude of the error depends on the fibre orientation 
distribution, the fibre length distribution and the mag- 
nitude of the shear lag effect. 
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